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Stochastic resonant media: Signal-to-noise ratio for the activator-inhibitor system
through a quasivariational approach
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We have made an analytical study of the phenomenon of stochastic resonance in a spatially extended
stochastic system of the activator-inhibitor kind. In its bistable regime, through aquasivariationalapproach we
make an approximate evaluation of thenonequilibrium potentialfor this system. The latter in turn allows us to
obtain the probability for the decay of the~extended! metastable states and through it the signal-to-noise ratio
within the framework of a two-state description. The analytical results show that this ratio increases with the
activator’s diffusivity, whereas it exhibits nonmonotonic behavior against variation of the coupling between
both fields.@S1063-651X~98!09605-6#

PACS number~s!: 02.50.2r, 05.40.1j, 47.54.1r
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In recent years the phenomenon ofstochastic resonance
~SR! has attracted considerable attention and has been e
sively studied from both the theoretical and experimen
points of view @1#. SR is the name coined for the rath
counterintuitive fact that the response of anonlinearsystem
to a periodic signal may beenhancedwith the addition of an
optimal amount of noise. The key parameter here is
signal-to-noise ratio~SNR! at the output. Very recently, at
tention has been focused on the occurrence of this phen
enon in coupled orextendedsystems@2–4#, which we might
call stochastic resonant media~SRM! @4#. A very convenient
tool ~where available! for the analysis of SRM is provided b
their nonequilibrium potential~NEP! @5# since it allows for a
straightforward computation of transition probabilities b
tween attractors.

In previous works@4# ~with the aim to encourage exper
mentalists dealing with distributed electronic, chemical,
biological systems to search for alternative variables to t
up so as to enhance the stochastic resonant response o
system! we have exploited our own results in finding a NE
for several reaction-diffusion~RD! models@6# to draw con-
clusions on the dependence of the SNR upon several rele
parameters. Among them, we have studied an effective o
component RD model that is equivalent to a two-compon
one of the activator-inhibitor type, in the limit of fast inhib
tion @7,8#. A response enhancement was observed not onl
a result of an increase in the~local! diffusive coupling, but
also due to an increase of anonlocaleffective self-coupling
that arises in this limit as a reminder of the couplingb be-
tween the activator and inhibitor fields. In this paper we ve
ture beyond the fast-inhibitor limit and analyze the SR p
nomenon in thefull activator-inhibitor system. We study th
bistable regime, where, in the phenomenologically relev
case of a very slow inhibitor, aquasivariationalapproxima-
tion can be used to obtain the NEP through a singular p
turbation approach@9#. The latter is exploited in turn to ob
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tain the SNR when the system is subjected to a modula
weak signal, within the framework of a two-state descripti
@10#. In agreement with previous studies@2,4#, our present
results indicate that this ratio increases with the diffusiv
~or local coupling parameter!. However, at variance with the
fast-inhibitor case@8#, it exhibits a nonmonotonic response
variations in the parameter that couples both fields.

The system we consider here is a one-dimensional
piecewise-linear realization of the ‘‘activator-inhibitor
class of RD models:

]u~x,t !

]t
5~et r !

21H e2
]2u

]x2
2u1u~u2a!2vJ ,

]v~x,t !

]t
5

]2v

]x2
1bu2gv. ~1!

This simple two-component RD model, while keeping t
essential features of the bistable and excitable regimes o
original models, is at the same time amenable to analyt
calculations. Under the names of Fitzhugh-Nagumo a
Bonhoffer–van der Pol models it has been used to mod
diversity of excitable systems, allowing for the theoretic
prediction of stationary patterns, which later were observ
in experiments@11,12#. Systems of this kind always have
‘‘rest’’ state, i.e., a~locally! stable steady state with uniform
concentration, so the fieldsu(x,t) and v(x,t) represent the
local differences between theactivatorand theinhibitor con-
centrations and their respective rest values. The constane,
t r , b, andg are all positive andu(x) is the Heaviside step
function. Insofar as the ‘‘excitability threshold’’a is posi-
tive, the piecewise-linear dynamics is essentially the sam
the original nonlinear one. The bistable regime of the syst
corresponds toa,g/(b1g) in Eq. ~1!. For b.0 the set of
equations~1! is nonvariationalbecause the standard cond
tions needed to define a potential are not fulfilled@5#. When
the inhibitor fieldv follows the activatoradiabatically ~that
is, whenet r→` and one can assume]v/]t50) the system
reduces to a single time-evolution equation~for the activator
5122 © 1998 The American Physical Society
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57 5123STOCHASTIC RESONANT MEDIA: SIGNAL-TO-NOISE . . .
field! with a nonlocal contribution in the space coordina
and it is possible to write out a NEP for this case@7#. In this
work we shall investigate instead the casee!1, where a
‘‘quasivariational’’ approximation is available@9#.

The system described by Eqs.~1! is assumed to be define
in an interval of length 2L, with Dirichlet boundary condi-
tions. The stationary solution is written as a linear combi
tion of exponentials exp (kix), where theki are the roots of
the characteristic polynomial@12#. The solutions under con
sideration are such that a central part of the system form
frozen ‘‘activated’’ region, i.e.,u(x).a. The solution is
piecewise analytic with matching points atuxu5xc , defined
by u(xc)5a. The coefficients are fixed by boundary an
matching conditions. The stationary solutions are indep
dent oft r since this is adynamicalparameter that specifie
the ratio between the relaxation constant ofu and that ofv.

When the parametere is small enough, the stationary con
centration patterns have two regions where both the activ
and inhibitor fields vary in a smooth fashion, separated b
sharp interface orboundary layer~BL! where the activator
field u varies abruptly@9,11#. In this case a quasivariationa
approximation is possible, which allows one to identify t
globally stable stationary solution of Eqs.~1!. Following Ref.
@9#, where such a method was developed, we divide the
ordinate space into two parts. One is the shape ofu within
the boundary layer, where we exploit the fact that the va
tion of the field v is not significant. The NEP is approx
mated in this region as

LBL$u~x!,v~x!;v I%5
1

et r
E

Xc2e

Xc1e

dxH e2

2 S du

dxD
2

1
u2

2
1v Iu

2~u2a!u~u2a!J , ~2!

wherev I is a characteristic value of the inhibitor field at th
interface@in our calculationv I5v(xc)]. The integration do-
main is limited to the region whereuxcu2e<uxu<uxcu1e.
Outside this boundary layer, we approximate the station
behavior of the activator by using the fact thate;0. This
approximation is the basis of the singular perturbat
method@11#. In that casev52u1u(u2a)→u5h6(v) and
the NEP in these regions results:

Louter$u~x!;h6~v !,v~x!%5E
~outer!6

dxH 1

2S dv
dxD

2

1
11g

2
v2

1~v I2v !u~xc2uxu!J . ~3!

Here the integration domain is limited to the regio
(outer)15$uxu<uxcu2e% and (outer)25$uxcu1e<uxu<L%.

Hence, fore!1 the NEP for Eqs.~1! can be approxi-
matedin the stationary caseas

LNE5L~outer!11L~outer!21LBL . ~4!

The locally stable uniform stateu5v50 can also be in-
cluded in Eq.~4! NEP. As the values ofu, v, andv I are zero
at this uniform state, we findLNE$u50,v50%50.

We can now analyze the global stability of the resulti
stationary patterns distinguishing the stable from the m
-

a

n-
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a
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-
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n
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stable ones through the NEP given in Eq.~4! and calculate
the height of the barrier between these attractors. The lin
analysis indicates that there are two stable stationary s
tions: the homogeneous oneu05v050 and the nonhomoge
neous solution with the largest activated zone (us , vs). Fig-
ure 1 shows, in agreement with previous studies@7,8#, the
dependence of the potential with the threshold parametera in
the neighborhood of the bistable regime, wherea5ac .
Clearly, the range ofe in this analysis is limited to smal
values in order that the singular perturbation scheme
valid.

As in previous studies@4,8#, we shall exploit a scheme
based on path-integral techniques, that allows one to desc
the decay of extended metastable states in a bistable situ
~only two attractors! @13#, yielding the following Kramers-
like result for the decay time:

^t&5t0 exp H DLNE@u,v#

h J , ~5!

with DLNE@u,v#5LNE@uu(y),vu(y)#2LNE@um(y),vm(y)#.
The prefactort0 is determined by the curvature ofLNE@u,v#
at its extrema andh is the intensity of the white noise, whic
is assumed to enter additively into the activator equation

In order to analyze the SR phenomenon in this spatia
extended system we subject the system, in the indica
bistable regime, to an external modulated weak signal of
form a(t)5ac1daccos(Vt1w), where ac is the threshold
value at whichLNE@us(y),vs(y)#[0. We shall follow a pro-
cedure already described in Ref.@8# and based on the two
state approximation of McNamara and Wiesenfeld@10#. If
the frequencyV of the external periodic modulation is sma
compared to other inverse time scales~such as the unper
turbed Kramers rate!, the stochastic stationarity can be co
tinuously achieved~i.e., the probability density adjusts adia
batically to the changing nonequilibrium potential!. In this
adiabatic limit, the stationary Fokker-Planck dynamics c
be used to compute probability densities and correlat
functions. In the bistable situation we need to concentr
only on the transitions between the two stable station
statesu05v050 and us ,vs through the saddle defined b
uu ,vu . We hence calculate the correlation function betwe

FIG. 1. Nonequilibrium potentialL ~evaluated at the stationar
patterns! as a function ofa for e50.005 andL51. Bottom curve,
stablenonhomogeneous solution; top curve,unstableone. The bi-
stability pointa5ac is indicated.
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these two states through the evaluation of the transition p
abilities between them,W0,s5t0

21 exp~2DLNE
0,s@u0 ,v0 ;us ,

vs#/h!, which appear in the associated master equation.t0 is
given by the asymptotically dominant linear stability eige
valuest052p/Auluuls (lu is the only unstable eigenvalu

arounduu ,vu andls is theaverageof the smallest eigenval
ues aroundu05v050 andus ,vs) @8#. Since for smalldac

DLNE
0,s'DLNE@u0 ,v0 ;us ,vs#

1dacF]DLNE
0,s@f,fc#

]a G
ac

cos~Vt1w!, ~6!

we can evaluate the correlation function by solving the m
ter equation up to first order indac and, by performing its
Fourier transform in time, get the power spectral dens
S(v). Using a by now standard definition of the SNR@10#,
we finally obtain its relevant part, given by

R;S L

t0h D 2

exp~22DLNE@u,v#/h!, ~7!

with L5@]DLNE/]a#ac
dfc . Equation~7! is similar in form

to that of zero-dimensional systems, but hereL, t0, and

FIG. 2. SNR for the activator-inhibitor model vs the noise i
tensityg for some values ofe: ~a! 0.48, ~b! 0.49, ~c! 0.5, and~d!
0.51. We have setb50.9, L51, a5ac , anddac50.01.

FIG. 3. Maximum SNR as a function ofe for the same param
eters as in Fig. 2. The line corresponds to a powerlike fit of the d
b-

-

-

y

DLNE@u,v# contain all the relevant information regardin
the spatially extended character of the system.

Figure 2 shows the dependence of the SNR on the no
intensityh for a few values ofe, while Fig. 3 shows that of
the maximum SNR one ~always for fixedb). The enhance-
ment of the SNR with increasinge is apparent. As in the
one-component model@2,4#, such an increase shows a pow
erlike dependence, at least in the limited range of values oe
we have analyzed, as indicated by the continuous line in F
3. Figure 4 shows the dependence of the SNR onh for a few
values ofb and Fig. 5 that of the maximum SNR onb for
fixed e. At variance with the adiabatic case@8#, there is a
nonmonotonic behavior in the system’s response aga
variation of b. As indicated in Fig. 5, this behavior is ad
equately fitted by a parabolic function.

Summarizing, we have studied the phenomenon of SR
a coupled or extended system~or SRM! with the aim of
recognizing parameters other thanh that could be tuned up
for an easier detection of the phenomenon. Particularly,
have analyzed the bistable ande!1 regime of a piecewise-
linear activator-inhibitor model, where a quasivariational a
proximation allows us to obtain the nonequilibrium potenti
This effective potential was exploited to obtain, within th

a.

FIG. 4. SNR as a function ofg for different values ofb: ~a! 0.7,
~b! 0.9, ~c! 1.0, ~d! 1.1, and~e! 1.5. We have sete50.005 and the
other parameters as in Fig. 3.

FIG. 5. Maximum SNR as a function ofb for e50.005 and the
other parameters as in Fig. 4. The line corresponds to a parabol
of the data.
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57 5125STOCHASTIC RESONANT MEDIA: SIGNAL-TO-NOISE . . .
framework of a two-state description, the signal-to-noise
tio for this system. The present results show, in agreem
with those obtained for the one-component model, a pow
like increase of the SNR as a function of the diffusion co
stante that plays the role of the spatial coupling paramet
However, at variance with the fast-inhibitor case studied
fore @8#, they also show a nonmonotonic behavior of t
system’s response against variation of the parameterb that
couples both fields. The clarification of the role played
this latter parameter will require further study, for instan
analyzing the effect of the indicated parameter alone by
glecting the spatial or diffusive coupling. This is part of
work under way@14#.

The relevance of the present results for technological
plications in signal detection as well as their biological im
plications are apparent. Many distributed electronic circu
can be regarded in the continuum limit as a set of diffusiv
coupled nonlinear oscillators. With regard to chemical s
tems, particularly interesting results ensue from recent
periments on several reactions done under good-stirring
ditions @15# ~corresponding to transitions between a foc
and an oscillatory state via a Hopf bifurcation, where bo
o

an
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nt
r-
-
r.
-

,
e-
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are homogeneous states! as well as a more recent and als
tightly related experimental result that corresponds to
case of resonant pattern formation in a chemical system@16#,
indicating the possibility of the appearance of SR under n
stirring conditions. Even though such cases cannot be
scribed by the activator-inhibitor model in the abov
indicated limit, they make apparent the relevance of su
results and the interest of further studies exploiting the
proach shown here. Since the present results predict a st
dependence of the SR upon both spatial and interspecies
pling parameters, we hope that they can motivate not o
the simulation of coupled sets of such nonlinear oscillat
but also the experimental search of this spatially depend
phenomenon in chemical and coupled electronic systems
particular, we expect that by exploiting an experimen
setup similar to the one in Ref.@16#, with a low-amplitude
~below-threshold! forcing plus noise, a SRM phenomeno
will show up.
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